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The initial-boundary value problem representing the supersonic flow of a viscous 
or inviscid gas is solved by a forward marching procedure which integrates a set of 
coupled nonlinear multidimensional equations. The numerical method is based upon 
an alternating-direction implicit scheme and sample calculations have been performed 
to demonstrate the capabilities of the procedure. The specific problem considered 
concerns the supersonic flow of a three-dimensional jet exhausting into a supersonic 
ambient stream. It is shown that stable and apparently accurate solutions can be obtained 
for axial steps considerably larger than those normally permissible with many con- 
ditionally stable procedures. The computational cost per grid point per axial step in the 
present problem was very approximately only a factor of 2 greater than that required 
with the conditionally stable methods. 

A viscous compressible fluid in the continuum flow regime satisfies the Navier- 
Stokes equations. The term “viscous” is herein applied in a generic sense in that 
flows wherein significant transport occurs by virtue of the turbulent Reynolds 
stresses are also considered to be “viscous.” This latter practice stems from the 
widespread use of an effective viscosity to introduce the turbulent stresses into the 
equations of mean motion. Examples of supersonic viscous flows are to be found in 
the flow around and behind bodies traveling at supersonic speeds within the 
atmosphere and in such exotic devices as continuous wave chemical lasers. 

If the flow is assumed to be inviscid the Navier-Stokes equations reduce to the 
Euler equations, and if, further, the flow is everywhere supersonic, the governing 
equations are hyperbolic and proved numerical schemes are available and have 
been applied to predict the flow field arising from very complex body shapes. 
However, the viscosity, although small, can be of considerable practical concern; for 
instance, in determining heat transfer rates to the body surface. The usual method 
of allowing for viscous effects is to assume the flow is primarily unidirectional and 
the layer where viscosity can affect the mean flow is thin so that transverse gradients 
are much greater than axial gradients, and that the pressure within the viscous 

150 
Copyright 8 1975 by Academic Press, Inc. 
All righta of reproduction in any form reserved. 



THREE-DIMENSIONAL SUPERSONIC FLOW 151 

layer is that impressed by the adjacent inviscid stream. By means of these assump- 
tions the Navier-Stokes equations may be reduced to the much more tractable 
boundary layer equations which form an intitial-boundary value problem. The 
thin boundary-layer or shear layer concept has proved very valuable in fluid 
mechanics but in certain circumstances cannot be applied, for instance in a super- 
sonic underexpanded jet mixing problem, since initially mixing occurs along the 
jet boundaries but eventually extends down to the jet centerline and complex 
pressure changes occur within the mixing region. The three-dimensional boundary 
layer equations are normally thought of as containing a diffusive flux in only one 
coordinate direction; that is, both axial and spanwise diffusive effects are negligible. 
Recently, however, considerable attention has been devoted to three-dimensional 
viscous Aows where only the axial diffusive tlux is neglected. The resulting proce- 
dures have shown considerable promise for treating such important practical 
problems as, for instance, the boundary layer corner flow and the viscous flow 
within ducts of arbitrary cross section. The present work stems from an interest in 
developing a very efficient numerical procedure for treating three-dimensional 
viscous flows at high Reynolds numbers where it is reasonable to neglect axial 
diffusive fluxes. 

Insofar as previous work on this area is concerned, Caretto, Curt-, and Spalding 
[1] have devised an implicit method which employs iterative point relaxation to 
solve the coupled nonlinear system derived from the Navier-Stokes equations 
with axial diffusion neglected. Caretto et al. were concerned with steady three- 
dimensional subsonic duct flow and uncoupled the axial pressure gradient from 
the cross-sectionally varying contribution. Since point relaxation generally con- 
verges slowly, it was felt that a considerable improvement in efficiency, parti- 
cularly with dense meshes, could be achieved by use of a more efficient algorithm. 
Dense meshes are, of course, frequently required in practical problems. Patankar 
and Spalding [2] further developed the procedure of Caretto et al. by developing 
a line relaxation procedure which solves an uncoupled linearized difference system. 
In spite of the resulting improvement in efficiency, the uncoupling of the equations 
and the linearization leave open to question the capability of the Patankar-Spalding 
procedure to allow for strong coupling between equations and the method’s 
ability to take large streamwise steps while retaining accuracy. In an effort 
to develop a high-efficiency method of treating the same reduced Navier-Stokes 
equations, Briley [3] applied an alternating-direction implicit (ADI) technique to 
an uncoupled linearized system iteratively. Subsequent experience with this 
technique, particularly with regard to the effect of compressibility, led to the 
development of the present procedure. 

All the procedures referred to above were developed primarily for treating 
subsonic or incompressible flows. Nardo and Cresci [4], however, treated a very 
similar set of governing equations in considering the boundary layer on a finite 
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plate at hypersonic speeds. The numerical method developed by Nardo and Cresci 
applied an ADI technique to a coupled but linearized system. The pressure was 
assumed constant in the axial (marching) direction and the band matrix arising 
from the application of the ADI technique was solved by Gaussian elimination. 
More recently, Rubin and Lin [5] considered the hypersonic leading edge problem 
and treated almost the same equations as Nardo and Cresci with the exception that 
in this instance all the pressure terms were retained. To solve their equations Rubin 
and Lin developed an efficient numerical method for initial-boundary value 
problems which treats the coupled nonlinear system by means of a semi-implicit 
predictor-corrector iterative scheme. Using this technique, Rubin and Lin were 
able to demonstrate clearly the very considerable gains in efficiency possible, 
vis-a-vis explicit procedures suffering from a viscous stability limitation, for treating 
this type of problem. In view of the Rubin-Lin findings, explicit techniques are not 
considered further in this study. In their work Rubin and Lin also considered an 
AD1 procedure as a candidate method of solving their particular problem. How- 
ever, difficulty in obtaining stable solutions with large axial steps caused Rubin and 
Lin to abandon their AD1 scheme in favor of the predictor-corrector scheme 
mentioned above. Several points should be noted at this juncture, however. First, 
no details concerning the precise ADI scheme considered by Rubin and Lin are 
available. In particular, it is not known how the linearization was carried out or how 
any nonlinear updating, if done, was implemented and both of these factors can 
have a major effect on the solution. Second, by using a predictor-corrector tech- 
nique a penalty is incurred vis-a-vis a noniterative ADI scheme if more than 
one corrector step is used and Rubin and Lin routinely used three corrector 
steps. Thus, there remain gains in efficiency to be had if a stable accurate AD1 
scheme can be made to work taking large axial steps. In view of the authors’ 
previous favorable experience with ADI methods, the present study was embarked 
upon. 

For the present. attention is restricted to flows that are everywhere supersonic, 
since in this instance the governing equations can be solved as an initial-boundary 
value problem without any assumptions about the pressure field. For subsonic 
flow, however. the inviscid flow region is known to be governed by elliptic 
equations, and in this circumstance, some means for satisfying downstream 
boundary conditions is required. One method for circumventing this problem for 
subsonic flows is to assume that the pressure field appropriate for irrotational 
inviscid flow in the geometry of interest represents a given, reasonable first approxi- 
mation to the actual pressure field. Thus, inviscid axial pressure gradients can be 
imposed upon the flow, much as in conventional boundary layer theory. Some 
preliminary results for subsonic flow in curved passages following this approach 
and using essentially the present numerical techniques have recently been computed 
by Briley and McDonald [6]. In addition, only the principal terms in the stress 
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tensor are included in the work discussed here and a temperature-independent 
viscosity has been assumed, although these restrictions have been removed in 
work now underway. 

GOVERNING EQUATIONS 

The Navier-Stokes equations governing the steady flow of a viscous gas can be 
written in Cartesian coordinates as 

= & (-p + V . u/3&), 

where ii, 2 = U, x; 21, y; w, z, respectively, for the x, ~7, and z momentum equations. 
The continuity equation is written 

& CPU> + 5 (PC) + & (pm) = 0. (2) 

In the above, U, D, and o are the components of the velocity vector U in the x, y, and 
z directions, p is the density, and the variables have normalized appropriately with 
reference quantities U, , pr , and all lengths normalized by L, . The pressure p is 
normalized by the reference dynamic head p,.ur2 and the Reynolds number Re is 
defined as prurL,/p. where ~1 is the usual coefficient of viscosity. V is the usual 
gradient operator. 

In the manner outlined in [l-5], a set of approximate equations may be derived 
from the Navier-Stokes equations by neglecting viscous diffusion in the primary 
flow direction. If attention is restricted to flows which are everywhere supersonic 
in this primary flow direction, the set of approximate equations may be solved by 
a forward marching technique without further simplification. To illustrate the 
numerical technique without undue complication while retaining the essential 
features of the problem, a temperature independent viscosity is assumed and only 
that portion of the stress tensor which appears in incompressible flow is retained. 
A constant stagnation temperature is also assumed. The resulting system is free 
from mixed derivatives and although mixed derivatives are permissible within the 
ADI framework, their formal treatment is somewhat time consuming. Prior 
experience with a very similar numerical procedure applied to the Navier-Stokes 
equations [7] has indicated that in viscous flow problems with a predominant 
primary flow such mixed derivatives can be quite satisfactorily lagged across a 
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streamwise marching step. With these approximations the Navier-Stokes equations 
become, with x the primary flow direction, 

where ii, 1 = II, x; o, JJ: w, z. The continuity equation is unchanged and the perfect 
gas law, together with the equation of state, serves to relate pressure to density and 
velocity; that is, 

p = Ap + &(u2 + v2 + w2), (4) 
A = RT”/u,2, (5) 
B = -RJ2Cp, (6) 

where R is the gas constant, C, is the specific heat at constant pressure, and To is the 
constant stagnation temperature. Thus, the pressure can be eliminated from the 
momentum equations and the resulting set, together with continuity equation, 
forms a coupled system of nonlinear equations which is solved numerically. No 
particular additional problem is posed by allowing the stagnation temperature to 
vary as this simply requires an energy equation to form part of the system. It can 
also be shown that the system of governing equations may be reinterpreted as the 
two-dimensional compressible time-dependent Navier-Stokes equations, in the 
present case, with a simplified stress tensor. The analogy only requires the stream- 
wise direction to be reinterpreted as a time coordinate with minor changes (simpli- 
fications) to the variables within the marching derivatives. For this reason the 
present scheme could perform a time-dependent Navier-Stokes calculation with 
some very small changes to the computer code and frequently in the present note 
the marching direction is referred to as the time or pseudotime coordinate. 

NUMERICAL METHOD 

The approximate governing equations form an initial boundary value problem 
but are nonlinear, coupled, and at any streamwise station pose a two-dimensional 
problem in the cross-sectional plane. These three aspects of the overall problem 
are treated in turn. For convenience, a shorthand difference notation is introduced 
where, if + is any variable located at the i, j grid point in the y, z direction of the 
cross-sectional plane, then, for instance, with equally spaced points and central 
differences, difference operators 6, and a,2 are introduced such that 
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with similar definitions of SZ and SZ2. It is assumed that the solution is known at 
cross-sectional plane n and it is desired to march to plane n + 1. The d symbol 
denotes the usual difference relationship, dy = yj+l - yi . 

The Linearization Process 

A major factor in the successful utilization of implicit techniques is the quality of 
the linear difference approximations to the nonlinear differential equations. It 
should be pointed out that even when applied to nonlinear systems all implicit 
schemes now available eventually reduce to the solution of a system of linear 
equations. It is clear that the capability of stable implicit methods to take large 
axial steps is of no consequence if the linear difference approximation is a poor 
representation of the nonlinear system and, consequently, either a small axial step 
or a large number of iterations will be required to preserve accuracy. A number of 
previous methods of treating a nonlinear system implicitly are discussed by Ames 
[8, p. 821 and von Rosenberg [9, p. 561. Of particular note are the methods based 
on the generalized Newton-Raphson technique where differencing is used to obtain 
nonlinear algebraic equations which are then solved iteratively as a sequence of 
systems of linear equations. Although an attractive technique, it can readily be 
determined that the computational effort involved in one Newton-Raphson 
iteration is commensurate with the effort required to march one axial step. The 
question then arises as to whether or not the same accuracy could be achieved for a 
given computational effort by taking fewer Newton-Raphson iterations and 
reducing the axial marching step. The question of accuracy also brings up the point 
that it is not efficient to reduce the errors arising from the nonlinearity below the 
truncation error arising from the basic differencing unless some other feature of 
the method, such as stability, is enhanced. A number of other linearization techni- 
ques have been proposed and some have fallen into a predictor-corrector category. 
As with the Newton-Raphson approach, care must be taken to ensure both 
convergence and a gain in computational efficiency relative to simply reducing the 
axial step. 

In a companion study Briley and McDonald [7] applied a noniterative lineariza- 
tion technique in developing an implicit procedure for solving the multidimensional 
compressible Navier-Stokes equations. The linearization was based on a Taylor 
expansion of the nonlinear terms about the known level solution. In order to 
illustrate this technique and introduce the concepts of the relationship of truncation 
error arising from linearization to truncation errors arising from spatial discretiza- 
tion, consider the nonlinear ordinary differential equation 

Wdx = f(4), 
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with exact solution 4 = Q(X). Using the mean value theorem a centered difference 
between levels n i- 1 and n leads to 

(p+l- p&lx = .$(fT"'l + f”) - @x2/12) WyxJ, (10) 

where X, < Xi < x,,+~ . The central problem now is to obtain a satisfactory 
representation off”+r which contains only linear contributions from @+l. This is 
done by expanding about the n level as follows, 

f ?a+1 = f” + (-$)” 04 + ($)” . y + 0(43), 

and again by expansion about the n level, 

cp+1 = 4” + Ax (S,” f q (q&)” + 0(4x3). 

(11) 

Thus from Eq. (12), the error in Eq. (10) arising from retaining only linear terms 
in the representation off nT1 given by Eq. (1 l), termed the nonlinear truncation 
error (NLTE), is of the order 

= ; (-g /g/$$/$$,” [Ax2 ($)” + .*. + O(dx3)] (13) 

c=3 ; Ax.2 [@yXi) - @,“y.ui)/@‘(xi)], where f = @‘(xi) # 0, (14) 

whereas the spatial truncation error (STE) in Eq. (10) is of order (4x2/12) @“‘(xi). 
Both truncation errors are of the same formal order so that in this example it is 
obviously inappropriate in general to proceed to improve only the NLTE by, say, a 
Newton-Raphson technique or a predictor-corrector procedure, since the effort 
involved is more effectively expended by decreasing the step size Ax which would, 
consequently, decrease both the NLTE and the STE. 

On the basis of the results of the simple example shown above, several additional 
points are suggested, notably that possibly certain ad hoc linearizations could 
effectively reduce the order of the truncation error of the overall method. Further- 
more, an optimum situation is where the NLTE and the STE are of the same order. 
Since the overall truncation error is determined by the lowest-order error, the effort 
required to obtain the higher-order truncation error, be it NLTE or STE, must be 
carefully weighed against the lack of improvement in the overall method truncation 
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error. Should a case arise where the NLTE is the determining factor, this error can 
be reduced in the present linearization by taking additional terms into account in the 
expansion about the known time level. These additional terms may be evaluated 
in a number of different ways, by iteration across a step, for instance, but once again 
care must be taken to ensure that the result is worth the effort. In this regard, the 
degree of iteration consistent with the spatial truncation error in the present 
linearization is quite evident, unlike, for instance, some of the techniques for 
solving the nonlinear difference equations where careful establishment of the 
convergence criterion (or number of allowable iterations) is necessary. 

The procedure may be formalized for a typical system with #J a function of x, ~1, 

Centering between the n + 1 and n levels and proceeding as in Eqs. (9)-(12) yields 

Ht$:+l) - H(h? = F(+,“) 6 
Ax 2 G($.“) II 2 [(y); (4;” - A”)] 

+ (@p):’ (4”” - bin) &,G(I&~); + @Ax’, Ay’). (16) 

If H($) were simply equal to 4, the expansion given by Eq. (16) is both linear and 
second order, and could then be utilized in the implicit elimination without further 
manipulation. If, further, F(4) were unity and G(4) were equal to #, the conven- 
tional Crank-Nicolson scheme is recovered. It is worth observing at this point that 
Briley and McDonald [7] developed a first-order-accurate linearization requiring 
only two levels of storage. However, in [7], one of the primary objectives was 
computing a steady solution as the asymptotic limit of an unsteady calculation, 
and since temporal accuracy was not overly important for this objective, a first- 
order-accurate procedure was sufficient. In the present application, however, 
second-order accuracy for the pseudotime or marching direction is considered 
important and, accordingly, the procedure necessary to maintain second-order 
accuracy while performing the linearization is delineated. It is apparent from 
Eq. (16) that if the pseudotime derivatives are themselves linear, then second-order 
accuracy requires no more than a simple Crank-Nicolson averaging of the 
transverse spatial derivatives followed by linearization in the manner of 171. If the 
pseudotime derivatives are nonlinear, however, then care is required to maintain 
second-order accuracy. The problem becomes apparent if, for the moment, 
attention is devoted to the simple problem of Eq. (10). Here it can easily be shown 
that even with the simplest of linearizations, i.e., thatf”+l is equal tofn, first-order 
accuracy in the pseudotime direction is obtained. Thus it is intuitively resonable 
to expect even a modest linearization (approximation) to fn+l to do better than 
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first-order accuracy. Turning now to Eq. (16) where pseudotime derivatives contain 
nonlinearities, it is obvious here that the simplest of linearizations, H(@ +‘) equal to 
H(p), completely destroys the solution. Thus considerable care is required in the 
case of nonlinear pseudotime derivatives. In these circumstances, an advantage is 
obtained by basing the linearization on an expansion about the (n + Q) level, as 
outlined below, and this yields 

H(@+l) - H(q5”) = cm a$ )f+(1;‘2) + (q&2). 

( -- AX dcj ax 1 (17) 

further, 
?z+l1;2) 

= ($,” + t-$&g)” + + o(Axz) (18) 

and, of course, in Eq. (17)(~~/lax) n+~l~z) is readily represented by a second-order- 
accurate finite-difference operator. The critical term in the linearization is then 
(&$/a~)~ appearing in the expression for (dH/d+) n+(1i2), and this term must be 
represented without an (n + 1) level term in the finite-difference operator, other- 
wise linearity would be lost. However, it is clear that in Eq. (18) a first-order 
representation of (&$/a~)~ is adequate to preserve overall second-order accuracy 
and so with a central difference for (&j/ax) n+“/2) and a backward difference for 
(a#?~)~, the result is 

Hn+l($b) - H”(4) 
Ax 

= d “+;- +” . [(+)” + ($)” . ( @ drip-’ ) +] + o(Ax2), (19) 

which is the desired expansion. The combination of Eqs. (16) and (19) then provides 
the linear difference representation of the model equation, Eq. (15), to second- 
order accuracy. 

Turning now to the specific equations under consideration in the present problem, 
Eqs. (1) and (2), the foregoing linearizations are readily applied using chain rule 
differentiation. Considering first the convective term in the marching direction and 
writing H for PUG, 

H”+l - Hn aH ap 
[- 

afz au aH 
Ax = ap ‘XT+ a24 ‘Z+ a2i ‘3T - aii n+(1’2’ + O(Ax2), (20) 3 

and expanding each of the derivatives in turn yields 
aH n+c1/21 

t-1 aP 

Ax 
'2 

= (1 + A)(ufp - h/2(zi9w+ + U”P1), (21) 
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where X = (x,+~ - x,)/(x, - x,+~), with similar consequences for (aH/&)n+(1/2‘ 
Using Eq. (21) in Eq. (20) results in the linear difference operator 

& puli = & [C,rp”+l + Cpl;Un+l + Co”lP+l + c’l, (22) 

where, for example 

c,, = (1 + h)(pu)” - h/2(p”u”-1 + unpn-l), 

-c = C,,p” + C&P + CJP, 

c, = (1 + X) z4* - h/2(@ + 2.8-l). 
(23) 

Turning now to a sample convective term not in the marching direction, 
a(piiu)/ay, with centering at the n + 4 level, we have 

( 1 $PziL' 
n+U/2) 

= ; &{(p3Ly+l + (pw? 

and 

(pfZq+l = (pzk)” + $ (pziu)” (pnfl - p”) 

+ ; (p&)” ($I+1 - u”) + ; (pziu)“, (L++l - v) 

= (zzv)” pn+1 f (pu)” ZPfl + (pu’)” LP+l - 2(pliv)n. (25) 

It should be noted that the derivation of the linear difference operator for &h-order 
higher derivatives not in the marching direction follows similarly to that shown 
above and results only in a change of the order of the spatial difference operator, 
in the above case &, to 6,“. Since only first-order derivatives appear in the pseudo- 
time direction, higher derivatives in the marching direction need not be considered. 
Using the process outlined by Eqs. (22), (23), and (25), the governing equations are 
linearized and attention is now devoted to the process of solving the resulting 
coupled linearized system of equations. However, in passing, it should be noted 
that although in the foregoing attention has been centered on schemes which are 
second-order accurate in the marching direction, the present linearization is quite 
general and in combination with say, either a multilevel difference scheme or by 
the use of iteration, a nonlinear truncation error of any order can be obtained if 
desired. 

Solution of the System of Equations 

Application of the linearization to the governing equations, (2) and (3), together 
with the equation of state, results in a system of equations at each grid point which 
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in going from pseudotime level II to n + I may be written in matrix difference 
operator notation as 

D,@“+l mz D,@“+l +- &@*l + S 3 (26) 

where @ is the column vector of the dependent variables u, P, p and W. D, , D, , and 
D2 are four-by-four matrices, but contain elements which are in themselves the 
spatial difference operators. The spatial difference operators associated with the 
x, J, and z directions are to be found in D, , D, , and D, , respectively. S is a four- 
row column vector consisting of known quantities. In the present study, to obtain 
a uniform second-order-accurate scheme, a Crank-Nicolson centering in the 
marching direction has been performed with centered three-point first and second 
derivatives in the cross section. The basic scheme. however, is quite general and 
higher-order differencing both in the cross section and in the marching direction is 
easily allowed for. Naturally the higher-order schemes would require the variables 
to be expandable in a Taylor series and introduce more grid points, but this causes 
little more difficulty than changing from a block-tridiagonal elimination to, for 
instance, a block-quindiagonal elimination scheme as a result of the higher-order 
differencing in the cross section. Higher-order differencing in the marching direc- 
tion simply requires more pseudotime levels to be stored. As mentioned earlier, the 
linearization scheme easily accommodates the required reduction in nonlinear 
truncation error. The matrices are given in detail in the Appendix A, and note that 
for convenience all the Crank-Nicolson type n-level terms have been incorporated 
into the source term S. 

As is well known, the matrix represented by Eq. (26) applied at each grid point 
requires special treatment in order to obtain the inverse efficiently, and only if the 
inverse is obtained efficiently can the implicit formulation be competitive with an 
explicit approach. In the present study, the matrix is inverted to order dx2, consis- 
tent with the overall scheme truncation error, by means of an approximate but 
noniterative two-step AD1 scheme. The actual scheme used was generated by 
applying the Douglas-Gunn [lo] technique to Eq. (26) and this resulted in the 
two-step scheme 

A[(@* - @“)/Ax] = D,@* + D,@’ + S, (27) 
A[(@** - @“)/Ax] = D,@* + D,@** + S, (28) 

where, for convenience, the D, operator has been particularized somewhat. The 
solution @** from the second step of the ADI scheme is accepted as @+I. The 
computational effort is reduced considerably if in the second step, Eq. (27) is 
subtracted from Eq. (28) which results in 

A[(@** - @*)/Ax] = D,(@** - W). 
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Of course, the key feature of ADI methods is the splitting into difference operators 
D, and D, containing all of the differencing appropriate to that particular coordi- 
nate direction. Douglas and Gunn were able to show that the ADI scheme given 
by Eqs. (27) and (28) satisfies the consistency condition under some fairly general 
assumptions, provided the original difference scheme, Eq. (26), is consistent. They 
were also able to show unfortunately in less general circumstances, that stability 
follows from that of the original difference scheme, in this case the two-dimensional 
analog of the Crank-Nicolson formula. In addition, they showed that the final 
solution @* * approximates @+l with an error no worse than dx2. Unfortunately, 
these results, while comforting, provide no guarantees for the equations of fluid 
mechanics treated here. In view of the complexity of the governing equations only 
observations based on the actual calculations seem warranted. 

To actually solve the two-step scheme specified by Eqs. (27) and (28), Eq. (29) 
may be written 

[(A/Ax) - D,] 6 = B, (30) 

where I = y, z and @ = @*, @**, respectively, and B is the appropriate source 
matrix for this step. When applied at each grid point in the cross section, a system 
of linear algebraic equations is obtained. Furthermore, the spatial difference 
operators within the Dz matrix when applied to CD at the ith grid point generate 
values of 6 at the i + 1, i, and i - 1 grid points, where the i indices are taken in 
2 direction. Thus the product matrix D,@ may be decomposed further into three 
components, such that 

and Dsk, k = i + 1, i, i - 1 is identical to the D, matrix, except that the spatial 
difference operators in the D, matrix are replaced by the difference weights appro- 
priate to that k-grid point arising from the application of differencing at the i-grid 
point. The block-tridiagonal structure of each level now becomes apparent if 
Eq. (30) is rewritten using Eq. (31) so that at each grid point i the result is 

-D$:16i-1 + [(A/dx) - D;]& - D$+'&+, = Bi . . . . (32) 

As a result, after application of the boundary conditions the system represented by 
Eq. (32) may be solved by a highly efficient block-tridiagonal elimination scheme, 
treating the x” direction implicitly. The precise scheme used in the present study 
consisted of applying a Gaussian elimination technique to the tridiagonal matrix 
(sometimes called the Thomas algorithm) but with the elements of the tridiagonal 
matrix treated as square submatrices rather than as simple coefficients. The required 
inverse of the diagonal submatrix was obtained by a Gauss-Jordan reduction. 
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It should be noted that during the first step of the ADI computation, w, the 
cross-sectional velocity in the direction being treated explicitly does not appear at 
the intermediate level in either the continuity or x-momentum equation. In the 
y-momentum equation, w, at the intermediate level, appears only as a result of the 
stagnation temperature dependence on w and, consequently, since this stagnation 
temperature dependence would almost certainly be weak, it seems reasonable to 
either neglect this dependence or, as is done here, to treat the o component in the 
stagnation temperature explicitly. If this approximation is used the z-momentum 
equation becomes the only equation to contain w at the intermediate level, and it 
may be solved by a straightforward application of tridiagonal elimination. The 
resultant coupled system representing the continuity, X- and y-momentum 
equations, it thereby reduced from block elements of four-by-four to block elements 
of three-by-three. A similar situation holds for U, the other cross-sectional velocity, 
during the second step computation. The resulting saving in computational time is 
considerable. Subsequently, some check calculations were performed using the 
coupled four-equation system and the results agreed very well the three coupled 
and one uncoupled equation systems except near the boundary when a disturbance 
left the solution domain and the streamwise step was relatively large. In these 
severe cases the influence of the applied boundary conditions appeared to require 
the coupled four-equation system for stability and this was done as required. 

At this juncture it is worth observing that in general there is a considerable 
increase in computational effort in solving a block tridiagonal system for say n 
dependent variables rather than n simple tridiagonal eliminations which would 
arise if the system were uncoupled. Obviously if the coupling between dependent 
variables were weak, for instance if the new level u velocity could be satisfactorily 
computed to the required accuracy by using the old level 27, w, and p or some 
n-level based approximation to the new level, there would be a very considerable 
gain in efficiency by making this approximation and solving for u in an uncoupled 
manner. In many simple flows more of this uncoupling could possibly be valid and 
certainly would result in a saving of computer time. Further uncoupling has not 
been adopted in the present work as it is an ad hoc approximation and in any event 
very likely to be invalid in most of the practical applications of interest to the 
present authors. 

Problem Specification and Boundary Conditions 

As mentioned earlier, it was desired to evaluate the present procedure on a 
problem not containing any embedded subsonic (elliptic) region. This precluded, 
for the time being, flows with solid boundaries and the consequent no-slip boundary 
condition, although such flows are currently being treated. Instead, a three- 
dimensional supersonic free-jet exhausting into an ambient supersonic stream was 
considered. From symmetry considerations only a quadrant of the flow need be 
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computed, and during the z sweep, first derivatives of U, w, and p with respect to y 
at the centerline were set to zero using a second-order-accurate one-sided difference 
formulation. Also, from symmetry u, the velocity in the y direction was set to 
zero at the centerline. During the 3’ sweep the u and w boundary conditions are 
simply interchanged. Note that since at each step of the ADI solution procedure 
the finite-difference equations represent an approximation to the governing partial 
differential equations, it is appropriate to apply the physical boundary conditions 
at the intermediate step. 

Outer edge boundary conditions raise some interesting points. As is well known, 
the system of equations considered in the present paper exhibits a nearly hyperbolic 
character when the disturbances are weak and the flow Reynolds number high. 
Thus the boundary of the computational domain can be selected on the outer side 
of the initial outgoing characteristic (or shock wave) and uniform flow boundary 
conditions imposed in the undisturbed flow domain. If troublesome, the problem 
of the growth of the computational domain can be treated by a linear transforma- 
tion back into a rectangular domain and/or by a nonuniform grid. The special 
problems which arise (see [ll], for instance) in performing accurate calculations 
when shock waves intersect boundaries, or indeed are present within the solution 
domain, are not considered in the present study. The principal point of interest 
now becomes the appearance of dependent variables from outside the solution 
domain at the implicit level. These variables arise from the use of centered second- 
order-accurate spatial differentiation and are in no way particular to the implicit 
formulation. Without any difficulty three of the four external variables can be 
removed from the equations by imposing the rather weak constraint that the 
second derivative of any three of the variables with respect to the implicit direction 
is zero (i.e., implicit linear extrapolation of the external variable). In view of the 
choice of the computational domain, from a physical point of view this approxima- 
tion should be a valid one. Consequently, the finite difference representation of the 
second derivative at the outer edge of the solution domain, when set to zero, 
provides a physically realistic relationship between the variable outside the domain 
and the variable at the edge of the domain and one grid point in from the edge. 
Thus three of the variables outside the domain may be eliminated in favor of the 
implicit variables within the domain. Since the three momentum equations are 
second order, the three imposed boundary conditions are not in conflict with the 
order of the equations. The continuity equation is first order, however, thus 
permitting only one boundary condition, in this case a previously applied center- 
line condition. Thus apparently there exists no legal way of applying a boundary 
condition to eliminate one of the variables outside of the domain. This result arises 
strictly as a result of the central differencing applied to the first-order continuity 
equation. In the limit of infinite Reynolds number the problem would also occur 
with the momentum equations. 



164 MCDONALD AND BRILEY 

There are several ways of dealing with the problem of removing variables from 
outside the computational domain. First, one-sided differencing could be used as 
appropriate and the variables outside the domain would no longer appear in the 
difference formulas. Second, the problem could be overconstrained by application 
of an extra boundary condition, or third, an “equivalency” condition could be 
applied wherein at the boundary the order of the governing equation is raised by 
differentiation to be the same as the order of the difference equation. The resulting 
discrete form of the differentiated governing equation is then used to eliminate the 
variable outside of the domain. All three of these techniques were tried in the 
present problem with varying results. 

One-sided difSerencing at the outer edge. First, special differencing in the region 
of the boundary seemed very attractive. In the present problem the velocities 
outside of the domain were eliminated by the application of boundary conditions. 
The density outside of the domain was then eliminated by utilizing second-order- 
accurate one-sided derivative formulas for density derivatives in the implicit 
direction. The resulting scheme behaved poorly. Quite rapidly the solution 
generated a significant error in the outer edge density and this error propagated 
rapidly into the solution. Several variants of this scheme were tried, including the 
use of higher-order one-sided difference formulas, with uniformly poor results. The 
reason for this behavior was not readily apparent but the one-sided difference 
approach was not considered satisfactory for use in the present problem. This is, 
of course, not to say that a change in differencing at the boundary could not be 
entirely satisfactory in other circumstances. Presumably the apparent unconditional 
instability with the one-sided difference approximations is explainable within 
the framework of the stability analysis of Gustafsson, Kreiss, and Sandstrom [12]. 

Overconstrained solutions. The second approach tried was simply to overcon- 
strain the solution by application of an extra boundary condition. Actually the 
problem of overconstraint has been studied in some detail with regard to linear first- 
order hyperbolic systems. Parter [ 13lconsidered the error propagation resulting from 
the application of “wrong” boundary conditions in two explicit schemes. Later, 
Parter’s work was generalized by Kreiss and Lundqvist [14], while subsequently 
Koster [15] examined the problem of stability arising from the application of extra 
boundary conditions. Unfortunately, as is often the case in the flow of a real fluid, 
little direct use can be made of the results obtained from consideration of a first- 
order linear hyperbolic system. However, it is observed that Parter and Kreiss and 
Lundqvist noted that the error resulting from the application of the wrong 
boundary condition would, in their system, propagate inward by an amount 
proportional to h log (h), where h is the vertical mesh spacing. It seems reasonable 
to suppose that the magnitude of the propagated errors would be proportional to 
the magnitude of the initial error, and Parter showed this to be true in the limit 
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of zero error, lending support to the thought that in the present problem if a 
physically acceptable but overconstraining boundary condition were applied and 
if the overall scheme were stable, the resulting small errors would be restricted to 
a narrow domain close to the boundary, provided a fine mesh were utilized. Since 
the outer boundary had been chosen to lie in the undisturbed domain it was physi- 
cally appropriate to expect the second derivative of density to be zero in this outer 
flow. Rather than have the solution return the expected value of the second deriva- 
tive of density, this condition was forced on the system by the application of the 
extra boundary condition. The resulting scheme appeared quite stable and no 
significant errors were generated at the boundary, at least until the initial charac- 
teristic was allowed to exit from the domain. If permitted, subsequent to the exit 
of the initial characteristic, the flow would settle down again to be quite uniform in 
the region of the boundary. Although hardly a definitive test, overconstraining the 
solution by application of an extra boundary condition, at least for the initial series 
of calculations, did not appear to result in any significant difficulties. 

An equicalency condition. The final approach tried was to eliminate the problem 
variables by application of an equivalency condition, as opposed to a boundary 
condition. In the particular instance considered, the source of the problem resides 
in the fact that the first order continuity equation, when discretized, requires more 
boundary conditions than the governing equation permits. To circumvent the 
problem the governing equation is differentiated so that the discrete form of the 
equations is equivalent, at least insofar as the boundary conditions are concerned. 
This process need only be carried out at the boundary and the continuity equation 
differentiated with respect to the implicit direction and the resulting equation used 
to eliminate the offending variables. This technique, although assuming differen- 
tiability, has the attribute that it adds no additional information to the system and, 
consequently, is not a boundary condition in a true sense but merely an imposed 
equivalency condition. For simplicity, the initial evaluation of the scheme was 
carried out on a two-dimensional problem. The appearance of cross derivatives 
containing both coordinates does present a problem with this scheme for use in 
multidimensional problems, although it is felt that a lagged evaluation of such 
cross derivatives suffices. In any case, an evaluation was made by differentiating 
the continuity equation with respect to the transverse (implicit) direction and this 
equation was used to eliminate the density outside the domain. The resulting 
scheme was stable for the range of step sizes investigated and, apparently, quite 
accurate. As with the overconstrained system, uniform flow of the expected magni- 
tude in the region of the boundary was obtained before and after the outgoing 
disturbance left the domain. The equivalency scheme, although slightly more 
laborious, seemed to possess better accuracy capability than the overconstrained 
solutions, and is described in detail in Appendix B. 
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In evaluating the results of the initial trials, it was felt that there really was not a 
great deal of difference between the overconstrained and the equivalency approach. 
In view of the savings in programming effort, the overconstrained approach was 
initially utilized throughout. However. it later become clear that when large axial 
steps were taken, the equivalency technique was much more stable, although with 
modest axial steps the two procedures behaved similarly. Consequently, the cases 
with the largest axial steps were, where appropriate, computed using the equi- 
valency technique and this technique is the preferred one at present. 

COMPUTATIONAL RESULTS 

Computed results for a square jet are considered initially; solutions for a rec- 
tangular jet will be presented subsequently. The free stream Mach number was fixed 
at 1.66 and a gas stagnation temperature of 3750” R adopted. The ratio of jet exit 
centerline velocity to free stream velocity was 1.25 in all cases. A constant velocity 
core was ascribed to the jet and this core was smoothly faired into the free-stream 
velocity over a distance of about one-quarter of a jet width using a hyperbolic 
tangent. A number of cases have been run successfully but only two broad 
categories are discussed here: first, where the density was specified such that the 
pressure at the initial plane was constant everywhere; and, second, where the jet 
pressure was 1.38 times the free stream pressure. 

Considering the case of matched initial pressure, calculations were first per- 
formed at infinite Reynolds numbers. A Courant-Friedrichs-Lewy (CFL) number 
(Courant et al. [ 161) is defined as 

rJx tanarc sin M-l/(dy or AZ), 

where dx is the streamwise step, dy or dz the cross-sectional step size, and A4 the 
streamwise local Mach number. Typically, many conditionally stable methods are 
evaluated on the basis of what fraction of the unit CFL number they can take for a 
streamwise step, given some transverse mesh. Indeed, as defined above, a unit CFL 
number would correspond to the axial step taken by a straightforward method of 
characteristic procedure integrating from every alternate transverse grid point. 
Calculations with the present method, performed using 45 x 45 grid points in the 
cross section for two streamwise meshes corresponding to CFL numbers of 12 
and 48, are shown in Fig. 1; calculations at a CFL number of 24 were not 
sufficiently different to warrant presentation. In Fig. 1 the profiles of axial velocity 
at various spanwise locations are shown at an axial location of x/L, = 0.62, which 
is about three jet heights downstream. As can be seen from Fig. 1, there was no 
significant difference between the results at various CFL numbers and, in addition, 
the exact result that, for a pressure matched situation the inlet profile is convected 
downstream without alteration was obtained correct to a minimum of five figures 
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X/L, = 0.62 M, = 1.66 Mi = 2.6 

0 CFL = 48 
- CFL 12 = 

FIG. 1. Rectangular jet velocity profiles at infinite Reynolds number and two CFL conditions. 

out of the eight carried by the machine (single precision was used throughout). 
Some error buildup was noted, however, near the upper boundaries, contaminating 
the fourth significant figure after twelve jet half-height downstream but this error 
was quite localized. Calculations were performed by changing from a consistent 
three-level second-order linearization to a first-order two-level linearization simply 
by equating the n and 12 - 1 levels in the linearized streamwise derivative of u” (see 
Eq. (23)). For the meshes examined, the differences were quite insignificant. Since 
a quadrant of a square jet was being computed, symmetry of the solution about 
the diagonal was also checked and at about twelve jet half-heights downstream 
was held to a minimum of five significant figures on axial velocity except close to 
the outer boundaries. Computer run times were CFL independent and averaged 
three minutes of Univac 1110 CPU time to march about eleven streamwise stations 
with 2025 grid points in the cross section. The circles on Fig. 1 denote the grid 
points at which the calculations were performed at the selected spanwise locations 
and, although the calculations were carried out to a y/L, of 1, only part of the flow 
field is shown in Fig. 1. 

Considering now the case of low Reynolds numbers, a viscous diiusion 
number is defined from Eq. (3) by analogy to simple heat flow equation (Richtmyer 
and Morton [17]) as 

Ax/& pu(Lly or 4~)~ 
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and for comparative purposes it is observed that in the diffusion dominated case of 
negligible convection the explicit method derived from a forward difference for the 
marching direction and centered space difference at the explicit level would be 
stable for a time step corresponding to a diffusion number less than or equal to Q. 
Several calculations were performed at low Reynolds numbers with a 45 ;< 45 
cross-sectional mesh and the results for a jet exit Reynolds number of 11, based on 
jet half-height, are presented in Fig. 2. A number of different streamwise steps were 
used and the results at an axial location of x/Lo = 0.62 for axial steps which gave 
diffusion numbers of 1200 and 300 are shown in Fig. 2. Very little difference in the 
two solutions can be observed and no difficulties were experienced in performing 
the calculations. The CFL numbers for these calculations were 48 and 12. The very 
interesting fluid mechanical observation was made in that although the pressure 
was constant everywhere at the inlet plane, quite rapidly as the flow developed, 
pressure gradients formed in the flow. The weak ripple in the axial velocity near 
the J~/L, = 0.14 location, evident in Fig. 2, was quite pronounced in the pressure 
profile. The initial velocity profile used for these calculations was, for all practical 
purposes, identical to that shown in Fig. 1, with the transverse velocities set to 
zero. After about thirteen jet heights downstream, symmetry was checked and at 
worst slight discrepancies in the fifth significant figure in axial velocity were obser- 

FIG. 2. Rectangular jet velocity profiles at low Reynolds number with various streamwise 
step sizes. 
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X/L, = 1.87 M, = 1.66 

Rj=“jL,lu=ll 

y = 2.6 ( MESH FOR INITIAL JET 0 16x16 DIFFUSION No-1200 

I -10x10 DIFFUSION NO-600 

TOTAL CROSS-SECTIONAL MESHES 45x46 

0.32. 

0.26- 

0.24- 
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Y/L, 
0.16. 

0.12 

0.06. 

FIG. 3. Rectangular jet velocity profiles at low Reynolds number and two jet cross sectional 
meshes. 

ved. Since diffusion did cause changes at the outer boundaries, it was not clear 
whether or not significant error buildup at the boundary was occurring. 

Also, at a Reynolds number of 11 and a 45 x 45 cross-sectional grid, calcula- 
tions were performed but in this instance the spatial mesh was locally refined in the 
jet, with the axial step kept the same. This transverse mesh refinement resulted in a 
doubling of the diffusion number and profiles of axial velocity approximately nine 
jet heights downstream are shown in Fig. 3. In this case the circles represent the 
refined mesh and, as can be seen, the two calculations do not differ significantly. 
Again, symmetry was checked and at worst slight discrepancies in the fifth figure 
on axial velocity were observed. 

Finally, the inlet density profile was adjusted to provide a jet static pressure of 
1.38 times the free-stream static and calculations performed for two Reynolds 
numbers for a 45 x 45 cross-sectional mesh. Apart from the inlet density profile 
the inlet conditions were identical to the pressure matched case and the inlet axial 
velocity profile, as indicated in Fig. 1. The results for a Reynolds number of 11, 
CFL number of 48, and diffusion number of 1200 are shown in Fig. 4, where 
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FIG. 4. Underexpanded rectangular jet density profiles at low Reynolds number. 

density profiles at various axial locations are shown. Immediately downstream of 
the inlet plane wiggles develop at the jet free-stream interface but these wiggles are 
substantially gone by four or five jet heights downstream. Near the jet center the 
jet initially overexpands, then subsequently compresses. Once again a symmetry 
check some ten jet heights downstream indicated at worst slight discrepancies in the 
fifth place on axial velocities. An identical calculation at a Reynolds number of 
5 x lo3 and CFL number of 50 became unstable after the initial characteristic 

PRESSURE RATIO 1.33 

CFL NO. - 1.4 

JET MACH NO. 2,5 

JET/FREE STREAM VEL. RATIO 1.33 

JET ASPECT RATIO 2:l 

PROFILES PLOTTED AT X/L, INCREMENTS OF 0.64 STARTING AT X/Lo - 0. 

FIG. 5. Underexpanded rectangular jet velocity profiles. 
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exited from the domain when overconstrained boundary conditions were applied. 
The calculation was rerun with the equivalency condition applied and a stable 
solution obtained. From the results it was evident that although stable the axial 
step was larger than desired in view of the rapid changes in flow properties in the 
axial direction, particularly near the center of the jet. 

PRESSURE RATIO 1.33 JET MACH NO. 2.5 

CFL NO. 50 JET/FREE STREAM VEL. RATIO 1.33 

JET EXIT REYNOLDS NO. - 1.5xid JET ASPECT RATIO 1:l 

PROFILES PLOTTED AT X/L, INCREMENTS OF 0.2 STARTING AT X/L, = 0.0 

FIG. 6. Underexpanded rectangular jet velocity profiles. 

JET ASPECT RATIO 1:l JET EXIT REYNOLDS NUMBER = 1.5~1~ 

PRESSURE RATIO = 1.33 JET MACH NO. 2.5 
CF L NO. 50 JET/FREE STREAM VEL. RATIO 1.33 

PROFILES PLOTTED AT X/L, INCREMENTS OF 0.2 STARTING AT X/L,, = 0.0 

FIG. 7. Underexpanded rectangular jet pressure profiles. 
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Two additional high Reynolds number cases were run for demonstration 
purposes. The first of these is for the same overpressured conditions as before and 
with a jet exit Reynolds number of 5 x 10d. However, in this instance a rectangular 
jet of 2 : 1 aspect ratio was considered. For this particular case a relatively small 
axial step corresponding to a CFL number of about 1.4 was used with a 40 x 80 
cross-sectional mesh. The velocity profiles at various axial locations downstream 
of the jet are shown in Fig. 5. The last case presented was again for an over- 
pressured jet and here an attempt was made to better define the flow within the jet 
itself by refining the mesh in this region. As in the earlier cases, a quadrant of square 
jet with a 45 x 45 cross-sectional mesh was used. With the refined mesh and an 
axial step sufficient to resolve the axial changes, the CFL number corresponding 
to the axial step was about 50. The severity of the outgoing pressure disturbance 
required that the calculation be performed using the coupled four-equation system 
and that the equivalency boundary conditions be imposed. When this was done 
little difficulty was experienced with the calculation and the velocity profiles are 
plotted in Fig. 6. In Fig. 7, a plot of the static pressure at various axial locations is 
given. 

CONCLUDING REMARKS 

There are two potential problem areas commonly associated with implicit 
methods, neither of which manifested itself in the present study. Both problems 
arise from the use of central differences and each will be reviewed in turn. Concer- 
ning the first problem, Roache [I81 has demonstrated that in certain cases with 
central differences and function boundary conditions the finite-difference solution 
of a simple convection-diffusion equation possesses an oscillatory solution (i.e., 
one with “wiggles”) when the cell Reynolds number is greater than 2. Now, as a 
rough guide, in most of the calculations reported in the present note, the cell 
Reynolds number based on cross-sectional mesh and velocity was approximately 
1O-3 times the Reynolds number based on jet half-height. Calculations were 
were performed for jet Reynolds numbers of 5 x 103, 5 x 104, and co so that the 
simple cell Reynolds numbers restriction was violated for a number of test cases 
without any apparent difficulty. As Roache [18] points out, there are a number of 
reasons why a multidimensional procedure might not suffer from a cell Reynolds 
number restriction of less than 2. In a companion study, however, Briley and 
McDonald [7] did encounter difficulties in a multidimensional problem which were 
attributed to the violation of a cell Reynolds number limitation. In review, it was 
concluded that the present procedure did not suffer from the same cell Reynolds 
number problem for the range of flow conditions investigated because the derivative 
boundary conditions which were applied did not require rapid variations in the 
region of the boundary, possibly aided by the low cell Reynolds numbers encoun- 
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tered near the boundaries and the appearance of a small amount of the diagonal 
element due to the nonuniform mesh. 

The second problem arises at high Reynolds number from the use of central 
differences on the convective terms. Since central differences with a uniform mesh 
do not involve the variable at the central mesh point, when large axial steps are 
taken to exploit the favorable stability properties of implicit methods, the results 
of this particular set of circumstances is readily seen (for instance, by inspection of 
Eq. (3)) to reduce the coefficient of the diagonal elements in the momentum 
equations. Eventually the system of equations ceases to be diagonally dominant 
and the possibility of significant error arising in the elimination scheme must be 
acknowledged. It should be noted that loss of diagonal dominance only implies the 
possibility that errors in the elimination scheme may arise, not that they will arise. 
In their study of pure convection in one dimension, Hirsh and Rudy [19] noted 
that with forward time and centered space differences the resulting system loses 
diagonal dominance when a time step greater than that corresponding to the usual 
CFL limit for this equation is taken. However, several points can be made con- 
cerning even this simple observation, the first being that with a Crank-Nicolson 
averaging the loss of diagonal dominance is postponed to twice the aforementioned 
streamwise step. Second, if attention is devoted to the convective terms in a 
matching problem of the type studied here, then the form of the linearization used 
can greatly affect the result. For instance, if nonconservative differencing is used 
then the cross-sectional velocity scales the spatial difference gradient giving a term 
(P)” u, I so that for weak cross flow, loss of diagonal dominance would rarely 
occur. The conservatively differenced scheme used in the present study was actually 
quite restrictive in this sense of diagonal dominance. Nonetheless, in the present 
study, a check of the elimination scheme by back substitution of the solution and 
computing of residuals revealed no error problem at the highest Reynolds numbers 
and largest axial steps both for the uniform and nonuniform mesh. Had significant 
elimination error been detected, consideration would have been given to restruc- 
turing the linearization but more than likely, since probably the new linearization 
would result in a lowering of the order of the nonlinear truncation error, the simple 
expedient of one-sided differencing on the appropriate convective term would have 
been adopted. Again, this would be at the expense of lowering the order of the 
truncation error unless the matrix were expanded to allow more off-diagonal 
elements. One-sided differencing on the convective term also eliminates any poten- 
tial cell Reynolds number limitation. 

As a rough guide, as was pointed out by Briley and McDonald [7], approxi- 
mately half of the computational effort in the type of problem considered here is 
involved with overhead calculations such as the evaluation of the coefficients of 
the equations of motion at each grid point. These overhead computations would 
be fairly independent of the method of integrating the differential equations and, 
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consequently, even the most efficient of integration schemes would not result in a 
method more than roughly about a factor of 2 faster per grid point per axial step 
than the present scheme. However, the demonstrated capability of the present 
procedure to take a spatial step more in keeping with the rate of change of the 
solution, rather than be restricted to a step dictated by the computational mesh, is 
a powerful factor in the methods favor. This is particularly evident in many of the 
problems facing the present authors, since the stability limitations turn out to be 
very restrictive and the rate of change of the physical processes permits a large step 
to be taken if the method is capable of taking it. 

APPENDIX A 

The matrix difference operator is given by Eq. (26) and represents the application 
of the differencing and linearization to the governing equations, in this case Eq. (3). 
The column vector CD contains U, U, p, and o in that order and the matrix difference 
operators are presented in the order of continuity equation; (z, w) momentum 
equation; (v, u) momentum equation; and finally, (x, u), the streamwise momentum 
equation. The A matrix is written 

CP / O / cu j O 
- - - - 

CPU j O j 5, / CP” 

(- - - - 

CPV 1 CPU 1 cuv 1 O 

Turning now to the D matrices, the notation is adopted that a spatial difference 
operator 6 occurring outside a curly parenthesis indicates that the matrix multi- 
plicative variable is to be inserted within the parenthesis prior to differencing. With 
this convention the D, matrix is written 
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As indicated in the text, the D, matrix is in fact the composite of n identical 
constituent matrices, D,“, where n is the number of grid points used in the difference 
operators 6, and az2, with the sole distinction that each of the 12 constituent matrices 
has the difference operator replaced by the weight appropriate to that grid point 
Following the same convection, the D, matrix is written 
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and, finally, the S matrix is written 
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APPENDIX B 

Considering the first ADI sweep to be implicit in the y direction and the second 
sweep to be implicit in the z direction, the continuity equation, Eq. (2), is differen- 
tiated with respect to y and z and then split into the ADI format. For the z-differen- 
tiated equation the split-differenced from of the equation is written as the difference 
between the ** and the * level variables; that is, between the n + 1 and the inter- 
mediate level variable. With the linearization and Crank-Nicolson averaging 
performed the v-differentiated continuity equation may be written 

(2/LlX) s&Pp* + p94* - 2pV) + P&3%* + u”p*) + 26,6,(p%J~) = 0 

and the z-differentiated equation written 

(2/h) 6&a** + unp** - p%f* - u”p*) + szyp5.0** + wnp** - 2p%J”) = 0. 

When either of the above equations is applied at or adjacent to the boundary it 
provides a relationship between the variables outside the solution domain and the 
variables within the domain. With three-point one-sided formulas for the difference 
operators applied at the point immediately outside the solution domain and the 
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introduction of all the other boundary conditions, the relationship may be written 
in matrix notation as 

IZi+l = Ezi $ Fz~-1 + Hy 

where E, F, and Z are four-by-four square matrices and H is a column vector 
comprised of four rows. The differential continuity equation can be applied at the 
actual boundary of the solution domain and central differences used to represent 
the derivatives. Such an application of the technique can eventually give rise to 
problems in severe cases when the coefficient of the central point is very small. This 
problem is eliminated by applying the differentiated equation at the point adjacent 
to but outside the solution domain and using one-sided differences. With three grid 
points the one-sided second derivatives are first order, but for small u and w carry 
little weight in the equation, particularly since the additional boundary conditions 
are that certain second derivatives are zero. High-order one-sided formulas can be 
incorporated and the appearance of Z,-, in the matrix may be treated by a straight- 
forward but special elimination. Higher-order difference schemes were in fact 
evaluated in the uncoupled system but it was felt that little was to be gained in 
utilizing such a scheme in the coupled system, for the moment. As was mentioned 
earlier, the additional boundary condition used throughout was that at the outer 
boundary the second derivative with respect to the implicit direction of U, v, and w 
be zero. Such boundary conditions are essentially uncoupled in that they give rise 
to an equation containing only one of the four dependent variables. The boundary 
conditions were ordered so that the resulting one nonzero element lay on the 
diagonal of the E, F, H, and Z matrices. More general coupled boundary conditions 
such as arise from the differentiated continuity equation give rise to an equation 
containing more than one of the dependent variables so that the row representing 
the coupled boundary condition contain off-diagonal elements in the E, F, H, I 
matrices. It is evident that there is no particular difficulty in allowing additional 
coupled boundary conditions at either the inner or outer edge of the domain in lieu 
of the uncoupled conditions suggested previously. 

In the overall block tridiagonal elimination process the variables outside the 
solution domain, designated by the subscript NE + 1, may be eliminated by the 
replacement 

Z jvEfl = I-lEZNE + I-lFZj,rE-l + I-lH, 

where 1-l is the inverse of the I matrix. The above derivation is carried out for the 
fully coupled system of governing equations. The extension for the case where one 
of the governing equations is solved independently is obtained by removing the 
appropriate row from the E, F, H, and I matrices. The implication is, of course, 
that not only must the governing equation itself be essentially uncoupled but so 
also must be the boundary conditions imposed upon the uncoupled equation. 
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The authors are indebted to Mr. B. Anderson of NASA Lewis Research Center for kindly 
constructing the plots presented in Figs. 5-7. 
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